Imperial College
London

Lecture 8

SystemVerilog HDL

Peter Cheung
Imperial College London

URL: www.ee.imperial.ac.uk/pcheung/teaching/EE2_CAS/
E-mail: p.cheung@imperial.ac.uk

PYKC 28 Oct 2025 EE2 — Circuits & Systems Lecture 8 Slide 1

Lecture Objectives

¢ By the end of this lecture, you should understand:
e The basic structure of a module specified in SystemVerilog HDL
e Commonly used syntax of SystemVerilog HDL
e Continuous vs Procedural Assignments
e always block in SystemVerilog and sensitivity list

e The use of arithmetic and logic operations in SystemVerilog
e The danger of incomplete specification
e How to specify clocked circuits

e Differences between blocking and nonblocking
assignments

PYKC 28 Oct 2025 EE2 — Circuits & Systems Lecture 8 Slide 2

Schematic vs HDL

Schematic

HDL

<\

<\

S NN

X X X X X X

Good for multiple data flow

Give overview picture

Relate directly to hardware

Don’t need good programming skills
High information density

Easy back annotations

Useful for mixed analogue/digital

Not good for algorithms

Not good for datapaths

Poor interface to optimiser

Poor interface to synthesis software
Difficult to reuse

Difficult to parameterise

v Flexible & parameterisable

v Direct mapping to algorithms

v Excellent for datapaths

text editor)

Serial representation
May not show overall picture
Need good programming skills

X X X X

Divorce from physical hardware

v Excellent input to optimisation & synthesis

v Easy to handle electronically (only needing a

PYKC 28 Oct 2025

EE2 - Circuits & Systems

Lecture 8 Slide 3

SystemVerilog HDL

¢ Similar to C language to describe/specify hardware
¢ Description can be at different levels:

e Behavioural level

e Register-Transfer Level (RTL)

e Gate Level

¢ Not only a specification language, also with associated simulation
environment

¢ Easier to learn and “lighter weight” than its competition: VHDL
¢ Very popular with chip designers

¢ For this lecture, we will:
 Learn through examples and practical exercises
 Use examples: e.g. 2-to-1 multiplexer and 7 segment decoder

PYKC 28 Oct 2025 EE2 — Circuits & Systems Lecture 8 Slide 4

HDL to Gates

* Simulation
= |nputs applied to circuit
= Qutputs checked for correctness

= Millions of dollars saved by debugging in simulation instead of
hardware

* Synthesis

= Transforms HDL code into a netlist describing the hardware (i.e., a list
of gates and the wires connecting them)

“* Physical design
= Placement, routing, chip layout, — not considered in this module

IMPORTANT:

When using an HDL, think of the hardware the HDL should produce, then write the
appropriate idiom that implies that hardware.

Beware of treating HDL like software and coding without thinking of the hardware.

PYKC 28 Oct 2025 EE2 — Circuits & Systems Lecture 8 Slide 5

SystemVerilog: Module Declaration

* Two types of Modules:
= Behavioral: describe what a module does

= Structural: describe how it is built from simpler modules

a —
b SystemVerilog
Module y
C —_—
module example(input

output

endmodu le

“* module/endmodule: required to begin/end module

* example: name of the module

PYKC 28 Oct 2025 EE2 — Circuits & Systems Lecture 8 Slide 6

System Verilog: Behavioural Description

module example(input ogic a, b, c,
output logic y);
assign y =~a &~b &~ | a&~b &~ | a&~b & c;
endmodu le

I.'ED@—D
un5_y y \
HOW: Ons 160 320ns 480 640ns 800
. 800 ns TR
=g - . x
un8.y Mb o [1 |
My o] | |

Based on: “Digital Design and Computer Architecture (RISC-V Edition)”
by Sarah Harris and David Harris (H&H),

PYKC 28 Oct 2025 EE2 — Circuits & Systems Lecture 8 Slide 7

System Verilog: Syntax

* Case sensitive

= e.g.: reset and Reset are not the same signal.
“* No names that start with numbers

= e.d.: 2mux is an invalid name
** Whitespace ignored

s Comments:
= /] single line comment
= [* multiline

n comment */

Based on: “Digital Design and Computer Architecture (RISC-V Edition)”
by Sarah Harris and David Harris (H&H),

PYKC 28 Oct 2025 EE2 — Circuits & Systems Lecture 8 Slide 8

System Verilog: Structural Description

Behavioural Structural

module and3(input logic a, b, c,
output logic y);
assigny=a &b & c;
endmodule

module nand3(input logic a, b, ¢
output logic y);
c nl;

and3 andgate(a, b, ¢, nl);

inverter(nl, y);

, , endmodule
module inv(input

output
assign y = ~a;
endmodule

PYKC 28 Oct 2025 EE2 — Circuits & Systems Lecture 8 Slide 9

System Verilog: Bitwise Operators

module gates(input ogic [3:0 a, b,
output logic [3:0] yl1, y2, y3, v4, y5);

assign

assign - 3:0]

S A\ 3:0] [3:0]
assign . 2] ,]

assign ; y3[3:0]

assign
endmodule

30] o) | {5:0) 3:0] [3:0 3:0] [3:0
4{2{3_0% 3:0) ||[3:0] D—J—] [’o -]
el S DOl

y1[3:0] y4[3:0]

[3:0]
) 3TN J30] (39 Dc J2:0) [3.0]:),5[3:0]

y2[3:0] y5[3:0]

T

Based on: “Digital Design and Computer Architecture (RISC-V Edition)”

by Sarah Harris and David Harris (H&H),

PYKC 28 Oct 2025 EE2 — Circuits & Systems Lecture 8 Slide 10

SysytemVerilog: Reduction Operators

module and8(input
output
assign y = &a;

endmodu le

Based on: “Digital Design and Computer Architecture (RISC-V Edition)”
by Sarah Harris and David Harris (H&H),

PYKC 28 Oct 2025 EE2 — Circuits & Systems Lecture 8 Slide 11

System Verilog: Conditional Assignment

module mux2(input

input
output

assign y = s 7 dl :

endmodule

-

Based on: “Digital Design and Computer Architecture (RISC-V Edition)”

by Sarah Harris and David Harris (H&H),

PYKC 28 Oct 2025

EE2 - Circuits & Systems

Lecture 8 Slide 12

System Verilog: Internal Signals

module fulladder(input
output

g;

assign a” b;
assign a & b;

assign s p ~ cin;
assign cout = g | (p & cin);

endmodu le

Based on: “Digital Design and Computer Architecture p
(RISC-V Edition)” by Sarah Harris and David Harris (H&H),

PYKC 28 Oct 2025 EE2 — Circuits & Systems Lecture 8 Slide 13

System Verilog: Precedence of operators

Highest N NOT
*, /% mult, div, mod
+, - add, sub
<<, >> shift
<K<, 23> arithmetic shift
<, <=2y comparison

equal, not equal

&, ~& AND, NAND

Ny &0 XOR, XNOR

|, ~ OR, NOR
Lowest ?: ternary operator

Based on: “Digital Design and Computer Architecture (RISC-V Edition)”
by Sarah Harris and David Harris (H&H),

PYKC 28 Oct 2025

EE2 - Circuits & Systems

Lecture 8 Slide 14

System Verilog: Number Format

Format: N'Bvalue
N = number of bits, B = base

N'B is optional but recommended (default is decimal)

Number

Bits

Base

Decimal
Equivalent

Stored

3'b101 3 binary 5 101

'bll unsized binary 3 00...0011
8'bll 8 binary 3 00000011
8'b1010 1011 8 binary 171 10101011
3'd6 3 decimal 6 110

6'042 6 octal 34 100010
8'hAB 8 hexadecimal 171 10101011

42 Unsized decimal 42 00...0101010

Based on: “Digital Design and Computer Architecture (RISC-V Edition)”
by Sarah Harris and David Harris (H&H),

PYKC 28 Oct 2025

EE2 - Circuits & Systems

Lecture 8 Slide 15

System Verilog: Bit Manipulations (1)

assign y = {al2:1], {3{b[@]}}, ale], 6'blo0_010};

*If y is a 12-bit signal, the above statement produces:

y = al2] al1] bl[e] b[o] b[e] al[e] 1000 10

** Underscores (_) are used for formatting only to make it
easier to read. System Verilog ignores them.

PYKC 28 Oct 2025 EE2 — Circuits & Systems Lecture 8 Slide 16

System Verilog: Bit Manipulations (2)

module mux2 8(input
1nput
output

Lsbmux(d@[3:0], d1(3:0], s, yl[3:0])
msbmux(d@(7:4], d1(7:4], s, yl[7:4])

endmodule
mux2
S
[7:0] [3:0] (3:0]
| do[7:0] a— d0[3:0] Y[3:0] =t
[7:0] [3:0]
| di[7:0] d1[3:0]
Isbmux
mux2
—— s
ﬂ-]— dO[3:0] y[S:O]—gi}‘
[7:4]
et (11[3:0]
msbmux

Based on: “Digital Design and Computer Architecture (RISC-V Edition)”

by Sarah Harris and David Harris (H&H),

PYKC 28 Oct 2025 EE2 — Circuits & Systems

Lecture 8 Slide 17

System Verilog: Floating Output Z

module tristate(input logic [3:0] a,
input Llogui¢ en,
output tri 3:0] y);

assign y = en ? a : 4'bz;

endmodule

y_1[3:0]

*** Note that Verilator does not handle floating output Z

Based on: “Digital Design and Computer Architecture (RISC-V Edition)”
by Sarah Harris and David Harris (H&H),

PYKC 28 Oct 2025 EE2 — Circuits & Systems Lecture 8 Slide 18

System Verilog: Delays

module example(input
output .
ab, bb, cb, nl, n2, n3;

assign #1 {ab, bb, cb} = ~{a, b, c};

assign #2 nl = ab & bb & cb;

assign #2 n2 = a & bb & cb;

assign #2 n3 = a & bb & c;

assign #4 y = nl | n2 | n3;
endmodule

» Delays are for simulation only! They do
not determine the delay of your
hardware.

¢ Verilator similator ignores delays — it is
cycle accurate without timing.

Based on: “Digital Design and Computer Architecture (RISC-V Edition)”
by Sarah Harris and David Harris (H&H),

PYKC 28 Oct 2025 EE2 — Circuits & Systems Lecture 8 Slide 19

System Verilog: Sequential Logic

** System Verilog uses idioms (or special keywords or groups of
words) to describe latches, flip-flops and FSMs

¢ Other coding styles may simulate correctly but produce incorrect
hardware

“* GENERAL STRUCTURE:

always @(sensitivity list)

statement;

“* Whenever the eventin sensitivity list occurs,
statement is executed

Based on: “Digital Design and Computer Architecture (RISC-V Edition)”
by Sarah Harris and David Harris (H&H),

PYKC 28 Oct 2025 EE2 — Circuits & Systems Lecture 8 Slide 20

System Verilog: D Flip-Flop

module flop(input
1nput
output

always_ff @(ljl'lf»f:,;_:::‘;rf‘
q <= d;

endmodu le

Based on: “Digital Design and Computer Architecture (RISC-V Edition)”
by Sarah Harris and David Harris (H&H),

PYKC 28 Oct 2025 EE2 — Circuits & Systems Lecture 8 Slide 21

System Verilog: Resettable D Flip-Flop

Asynchronous reset Synchronous reset

module flopr(input
input

module flopr(input

input
input
output

input
output

always_ff @(posedge clk, posedge always_ff @(posedge
if (reset) q <= 4'b0; 1f (l—'eset). q <= |
else q <= d; else q <=
endmodule
endmodu le
[clk .
3:0 3:0
d[3:0] Sl D[3:0] Q[3:0] EL5-52 T— q3:0] —
reset - R

Based on: “Digital Design and Computer Architecture (RISC-V Edition)”
by Sarah Harris and David Harris (H&H),

PYKC 28 Oct 2025 EE2 — Circuits & Systems Lecture 8 Slide 22

Combinational Logic using always

module gates(input 1logic [3:0] a, b,
output logic [3:0] yl, y2, y3, v4, y5);

a lways_comb
begiln

end
endmodu le

This hardware could be described with assign statements using fewer lines
of code, so it's better to use assign statements in this case.

Based on: “Digital Design and Computer Architecture (RISC-V Edition)”
by Sarah Harris and David Harris (H&H),

PYKC 28 Oct 2025 EE2 — Circuits & Systems Lecture 8 Slide 23

Putting everything together — 7 seg decoder

In1:in0

0
. eeg | outts.0l] 551 mmm | in[3.0] | out[6:0] | Digit |
- decoder a4l)2 0000 1000000 1000 0000000 g
3 0001 1111001 :' 1001 0010000 9
In3 : in2 0010 0100100 1010 0001000 A
outé 00 01 11 10 0011 0110000 5 1011 0000011 b
00 1 0 1 0 0100 0011001 Y 1100 1000110 E
0101 0010010
o . 0 0 0 5 1101 0100001 d
0110 0000010 b 1110 0000110 £
11 0 1 0 0 -
0111 1111000 i 1111 0001110 F
10 0 0 0 0
out6 = /in3*/in2*/in1 + in3*in2*/in1*/in0 + /in3*in2*in1*in0
out5 = /in3*/in2*in0 + /in3*/in2*in1 + /in3*in1*in0 + in3*in2*/in1*in0
outd = /in3*in0 + /in3*in2*/in1 + in3*/in2*/in1*in0
out3 = /in3*in2*/in1*/in0 + /in3*/in2*/in1*in0 + in2*in1*in0 + /in2*in1*/in0
out2 = /in3*/in2*in1*/in0 + in3*in2*/in0 + in3*in2*in1
outl =in3*in2*/in0 + /in3*in2*/in1*in0 + in3*in1*in0 + in2*in1*/in0
out0 = /in3*/in2*/in1*in0 + /in3*in2*/in1*/in0 + in3*in2*/in1*in0 + in3*/in2*in1*in0
PYKC 28 Oct 2025 EE2 — Circuits & Systems Lecture 8 Slide 24

Method 1: Schematic Entry Implementation

out6 = /in3*/in2*/in1 + in3*in2*/in1*/in0 + /in3*in2*in1*in0
out5 = /in3*/in2*in0 + /in3*/in2*in1 + /in3*in1*in0 + in3*in2*/in1*in0
out4 = /in3*in0 + /in3*in2*/in1 + in3*/in2*/in1*in0

out3 = /in3*in2*/in1*/in0 + /in3*/in2*/in1*in0 + in2*in1*in0 + /in2*in1*/in0
out2 = /in3*/in2*in1*/in0 + in3*in2*/in0 + in3*in2*in1

outl =in3*in2*/in0 + /in3*in2*/in1*in0 + in3*in1*in0 + in2*in1*/in0

out0 = /in3*/in2*/in1*in0 + /in3*in2*/in1*/in0 + in3*in2*/in1*in0 + in3*/in2*in1*in0

TEDIOUSI!M

PYKC 28 Oct 2025 EE2 — Circuits & Systems Lecture 8 Slide 25

Method 2: Use primitive gates in Verilog

DD inja) o ANIBa S NN Direct mapping of gates to
- >< o R primitives
X : ¢/r
>.< nin[0]

ninf{l]):;
"], 1in[0]):
and AND3 (C, in[3], in[2], nin[l], nin[0]):
cr OR1l (out[é]l, A, B, C);

PYKC 28 Oct 2025 EE2 — Circuits & Systems Lecture 8 Slide 26

Method 3: Use continuous assignment in Verilog

in3*in2*/in1*/in0 + /in3*in2*in1*in0 |

Tninf3] Lo CGANDSTTTTTTOING

nin(2] . se D_?::::::::::::::::::

nin[1]. ye— Much Better?

,,,,,,,,,,,,,,,, Direct mapping of Boolean
.]n[3] AND4: equatlon US|ng COﬂtInUOUS

o /\ TR : o B aSS|gnmen.t

7

~lns2......... @ssign out[6] Qszwin:z:&qn:l:

in| 3TeInrf246

PYKC 28 Oct 2025 EE2 — Circuits & Systems Lecture 8 Slide 27

module & endmodule

sandwich the content of Hext07seg.v (In Verilog)

this hardware module

convert 4-bit hex wvalue

‘E——’

segment display

to drive

output is low active
Peter Cheung

~

.

S

good header helps
documenting your code

specify interface to this
module as viewed from

2 Oct 2011 outside specify a 7-bit output bus,
“““““““““““““ out[6] ... out[0]
module hex to 7seg (out,1in): .
declaration of
output [6:0_E out; // low-active output to drive 7 segment display kuautarmioutput
input [3:0] in; // 4-bit binary input of a hexademical number poﬂs
assign out[6] = ~in[3]&~in[2]&~in[l] | in[3]&in[2]&~in[l]&~in[0] |
~in[3]&in[2]&in[l1]&in[0];
assign out[S5S] = ~in[3]&~in[2]&in[0] | ~in[3]&~in[2]&in[1l] |
~in[3]&in[l1]&in[0] | in[3]&in[2]&~in[l1l]&in[0];
assign : 1&in[0] | ~in[3]&in[2]&~in[l] | in[3]&~in[2]&~in[l1l]&in[0];
assign out[3] = ~in[3]&1 i

in[2]&in[1)&in[0]

| in[l]&~in[0];

1]&~in[0] | ~in[3]&~in[2]&~in[1]&in[0] |

assign out[2] = ~in[3]&~in[2]&in[1]&~in[0] | in 1&~in[0] | | assign used to specify
in[3]&in[2]&in[1]; : . ; A
assign out[l] = in[3]&in[2]&~in[0] | ~in[3]&in[2]&~in[l1]&in[0] | combinational circuit
in[3]&in[1]&in[0] | in[2]&in[l]&~in[0];
assign out[0] = ~in[3]&~in[2]&~in[1]&in[0] | ~in[3]&in[2]&~in[l1l]&~in[0] |
in[3]&in[2]&~in[l1]&in[0] | in[3]&~in[2]&in[l]&in[0];
endmodule
PYKC 28 Oct 2025 EE2 — Circuits & Systems Lecture 8 Slide 28

Method 4: Power of behavoural abstraction

module hexto7seg

| input Llogic - 1000000
always_comb - 0001 1111001 {
e (0 BEAUTIFUL — P P
4'h0: out = 7'b1000000; -
4'hl: out = 7'b1111001; 0011 0110000 5
4'h2: out = 7'b0100100; 0100 0011001 o
4'h3: out = 7'b0110000; =
4'h4: out = 7'b0011001; 0101 0010010 -
4'h5: out = 7'b0010010; 0110 0000010 5
4'h6: out = 7'b0000010; -
4'h7: out = 7'b1111000; 0111 1111000 ’
4'h8: out = 7'b000000D; 1000 0000000 =
4'h9: out 7'b0011000; q
4'ha: out 7'b0001000; Lot o 0o —
4'hb: out = 7'b0000011; 1010 0001000 H
4'hc: out 7'b1000110; 1011 0000011 Iy
4'hd: out = 7'b0100001; —
4'he: out = 7'b0000110; Direct mapping of truth 1100 1000110 C
4'hf: out = 7'b0001110; table to case statement 1101 0100001 d
diefault: out = 7'b0000000; Close to specification, 1110 0000110 £
enacase . . -
endmodule not implementation 1111 0001110 F

PYKC 28 Oct 2025 EE2 — Circuits & Systems Lecture 8 Slide 29

From SystemVerilog code to FPGA hardware

SystemVerilog
code
.... If (sel) out = a;
else put= b;
Expanded

SystemVerilog code

l _______

Gate netlist
AND G1(n1,n2,n3)
NOT G2(n4,n1)

l _______

Optimised netlist

Elaboration: checking
syntax, expanding and
creating instances etc.

Compilation:
behaviour description
to gate netlist or
internal format related
to hardware

Synthesis: optimise
logic, tradeoff amount
of hardware with
speed etc.

—>

FPGA specific
hardware (LE,
memory etc)

NAND K1(n4,n2,n3)

l _______

Physical location
of hardware and
interconnect

Programming
(Configuration)
bitstream

~
~~o
-~
-~

Technology mapping:
map hardware to LEs,
flipflops, memory blocks,

multipliers etc.

Place & Route: Fix the
locations and wirings of
all the hardware blocks
for a specific FPGAs

Assembler: Produce the
binary bit pattern needed
to program (or configure)
the FPGA

PYKC 28 Oct 2025

EE2 - Circuits & Systems

Lecture 8 Slide 30

Power of SystemVerilog: Integer Arithmetic

¢ Arithmetic operations make computation easy:
module add32

input logic [31:0
input logic [31:0
output logic [31:0

);
assign sum = a + b;
endmodule

¢ Here is a 32-bit adder with carry-in and carry-out:
module add32_carry
input logic [31:0 a,
input logic [31:0 b,
input Llogic c£in,
output logic [31:0 sum,
output Llogic cout
5

assign {cout, sum} = a + b + cin;
endmodu le

PYKC 28 Oct 2025 EE2 — Circuits & Systems

Lecture 8 Slide 31

A larger example — 32-bit ALU in SV

: .)) i] module mux2tol (
¢ Here is an 32-bit ALU with 5 simple instructions: input logic [31:0

A[31:0] B[31:0] input logic [31:0

input logic

output logic [31:0
);

assign out = sel ? il :
endmodule

module mux3tol (

F[20] input logic

T
g

E input logic
L_______j r_______J E input log
00 01 1'0 . : input logic
F[2:1] § output logic
- always_comb
R[31:0] F2 F1 FO | Function e
00O A+B 2'b00: out
0 01 A+1 2'b01: out
010 A-B 2'b10: out = i2;
011 A-1 default: out = 32'bx;
1 0 X A*B endcase

endmodule

PYKC 28 Oct 2025 EE2 — Circuits & Systems Lecture 8 Slide 32

The arithmetic modules

¢ Here is an 32-bit ALU with 5 simple instructions: B :
A[31:0] B[31:0] : :

sennnnnnnnnnnnd

IlllllllllllllllllllIllllllllllll.lllllll‘
—
ﬂ

module sub32
input logic

input logic
output Llogic

);
assign diff =
endmodule

module add32 (
input logic [31:0
input logic [31:0
output logic [31:0
i

assign sum = i@ + il;
endmodule

<

PYKC 28 Oct 2025

EE2 - Circuits & Systems

Lecture 8 Slide 33

Top-level module — putting them together

¢ Given submodules:

module alu
input
input
input
output

2tol sub_mux

endmodule

module
modu le

module
modu le

2:0
31:0

addmux_out, submux_out;

add_out, sub_out, mul_out; : | I
F[2:1]

2tol adder_mux

e
, 32'd1,
our_adder
out_sub
our_mult

(
(
(
(
(
(

mux2tol (i@, i1, sel, out);
mux3tol (i@, il, i2, sel, out);
add32 (i@, il, sum);

sub32 (i@, i1, diff);
mulle (i@, i1, prod);

A[31:0] B[31:0]

......... alu
3241 3241
\0 1/—1\0 1/ E
| 1% - F[2:0]
+ _ *

fl0), addmux_out);
fl0), submux_out);

R[31:0]

, addmux_out, add_out);
, Ssubmux_out, sub_out);
15'0 , b[15:0], mul_out);
1 output_mux(add_out, sub_out, mul_out, f(2:1], r);

PYKC 28 Oct 2025

EE2 — Circuits & Systems Lecture 8 Slide 34

